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Purpose. To develop a data supplementation [i.e., a pharmacokinetic/pharmacodynamics (PK/PD)
knowledge creation] approach for generating supplemental data to be used in characterizing a targeted
unexplored segment of the response surface.

Methods. The procedure for data supplementation can be summarized as follows: 1) statement of the
objective of data supplementation for PK/PD knowledge creation, 2) performance of PK knowledge
discovery, 3) PK data synthesis for target dose group(s), 4) covariate data synthesis for virtual subjects
in the target dose group(s), 5) discovery of hidden knowledge from real data set to which supplemental
data will be added, 6) implementation of a data supplementation methodology, and 7) discovery and
communication of the created knowledge. A nonparametric approximate Bayesian multiple supplemen-
tation and its modification, structure-based multiple supplementation, which is an adaptation of the
approximate Bayesian bootstrap, is proposed as a method of data supplementation for PK/PD knowl-
edge creation. The structured-based multiple supplementation methodology was applied to characterize
the effect of a target dose of 100 mg that was unexplored in a previously concluded study that investi-
gated the effect of 200- and 600-mg doses on biomarker response.

Results. The target dose of 100 mg was found to produce a response comparable with that of the 200 mg
and better than that obtained with the 600 mg.

Conclusions. Implementation of the PK/PD knowledge creation process through data supplementation
resulted in gaining knowledge about a targeted region of a response surface (i.e., the effect of a target
dose) that was not previously studied in a completed study without expending resources in conducting
a new study.

KEY WORDS: data supplementation; multiple supplementation; PK/PD knowledge creation; struc-

ture-based multiple supplementation; nonparametric approximate Bayesian bootstrap.

INTRODUCTION

Pharmacokinetic/pharmacodynamics (PK/PD) knowl-
edge creation is the process of building upon current under-
standing of data that is already acquired by generating more
data (information) that can be translated into knowledge. It
entails the use of (valid) models to synthesize data, estimate
inestimable uncertainty, or supplement data for further
knowledge acquisition.

When there is a considerable amount of information
about the drug, synthesizing data into a coherent package that
indicates the drug developer has understanding of the phar-
macology and, eventually, good control over the therapeutics
of the drug provides a means for knowledge creation about
the drug being developed. Data synthesis is performed when
available knowledge about the drug is used to simulate a
clinical trial to explore study outcome when various control-
lable and uncontrollable factors are varied. This is a knowl-
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edge creation process because the objective is to obtain
knowledge about the unknown (i.e., unexplored region of the
response surface) using valid models. A case in point is the
use of clinical trial simulation to investigate the exposure-
response relationship in a first time-in-man study. This in-
volves not only extrapolation of PK/PD from animal to man,
but also the exploration of the response surface, hitherto un-
known, for a new compound about to be introduced into man
(1). Data synthesis via clinical trial simulation offers the
means of generating complex data sets, which may include the
influence of prognostic factors, sample size, and dropouts, for
testing new competing analysis methods (2,3).

Physiologically based pharmacokinetic (PBPK) model-
ing is a modeling approach that lends itself to knowledge
creation (1). The result is a model that predicts the qualitative
behavior of the experimental time course without being based
on it. Refinement of the model to incorporate additional in-
sights gained from comparison with experimental data yields
a model that can be used for quantitative extrapolation be-
yond the range of experimental conditions. That is, the model
allows predictions to be made of the kinetic behavior of drug
at various dose levels and routes of administration.

0724-8741/05/0400-0523/0 © 2005 Springer Science+Business Media, Inc.



524

Parameter estimation without an appropriate assessment
of reliability of the estimates yields no confidence in such
estimates. Estimation of uncertainty enables the use of such
parameter estimates in data synthesis. Embarking on data
synthesis (e.g., clinical trial simulation) using model param-
eter estimates without associated uncertainty or poorly de-
fined uncertainty will produce unreliable outcomes. Some-
times it is impossible to obtain standard errors for population
model parameter estimates when small sample sizes are used
for population PK/PD modeling. The bootstrap with win-
sorization has been proposed for the estimation of inestima-
ble uncertainty—standard errors—for population PK/PD pa-
rameters that are usually not obtainable using software such
as NONMEM because of small sample size (4).

Data supplementation deals with the use of models on
available data to generate supplemental data that will be used
to characterize a targeted unexplored segment of the re-
sponse surface. The assumptions about models to be used in
data supplementation are not as stringent as those required
for data synthesis. That is, the use of predictive models is not
an absolute necessity.

The intent of knowledge creation is the characterization
of unexplored response surface to aid our understanding of
drug action. The response surface can be described as three-
dimensional. On one axis are the input variables (controllable
factors) such as dosage regimen and concurrent therapies.
Another axis incorporates patient characteristics, which sum-
marizes all the important ways patients can differ that affect
the benefit to toxic ratio (5). That is, the response surface
describes the relationship between the therapy and the effects
and how this relationship varies with patient characteristics
and time to explain tolerance or sensitivity. For rational drug
development and the optimization of individual therapy, this
response surface must be mapped for the target population.
This shift has occurred because of a concern for maximizing
the benefit/risk ratio for individual patients in addition to
answering the question of efficacy. Regarding knowledge of
the response surface, PK/PD knowledge discovery (6) and
creation, as described later, greatly improve the precision of
this process, which in turn can result in rational drug devel-
opment with optimized dosing strategies. PK/PD knowledge
discovery is the nontrivial process identifying valid, novel,
potentially useful, and ultimately understandable patterns in
data by characterizing data structure by means of a model (6).

With the PK/PD knowledge discovery process, informa-
tion (data) is turned into knowledge, and the PK/PD knowl-
edge creation process results in more knowledge generation.
Knowledge extracted or created from a clinical trial data set
can then be used for decision making. Thus, after the comple-
tion of the PK/PD knowledge creation process, a better com-
prehension is gained about the response surface. This knowl-
edge and comprehension makes wisdom for rational drug de-
velopment possible, because wisdom (the knowledge and
ability to make the right choices at the opportune time) is the
final step of good mission-critical decision making. That is,
the created knowledge can then be appropriately applied in
the design and conduct of appropriate mission-related clinical
trials, or the progression of a compound in development.

Knowledge creation is an emerging, interdisciplinary re-
search field that lives at the intersection of computer science
(database, artificial intelligence, graphics, and visualization),
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statistics, and an application domain such as clinical pharma-
cology in general, and pharmacometrics in particular.

In this paper we propose data supplementation as a PK/
PD knowledge creation methodology for characterizing a tar-
geted segment of an unexplored region of the response sur-
face.

GENERAL STEPS IN THE PK/PD KNOWLEDGE
CREATION PROCESS

PK/PD knowledge creation from a clinical trial data set is
a process that can be formalized into a number of steps. In
this section, we provide a general framework for the steps
needed to be taken in the PK/PD knowledge creation process.
These steps could vary depending on the type of knowledge
creation approach involved. Subsequently, data supplemen-
tation—the PK/PD knowledge creation approach of focus in
this paper—is discussed.

Briefly, the steps in the PK/PD knowledge creation pro-
cess are as follows:

1. Statement of the objective of the PK/PD knowledge
creation process;

2. A data set and/or a valid model summarizing the dis-
covered knowledge from a prior PK/PD knowledge discovery
process;

3. Performance of knowledge creation (i.e., data synthe-
sis, estimation of inestimable uncertainty, or data supplemen-
tation);

4. Analysis of the data generated in step 3;

5. Application of the knowledge created; and

6. Communication of the created knowledge.

The objective of the PK/PD knowledge creation process
must be clearly defined. With a clear objective in mind, the
path chosen for the PK/PD knowledge creation process can
be delineated. For PK/PD knowledge creation via data syn-
thesis, valid models are needed. Data synthesis performed
using clinical trial simulation requires the use of valid input/
output models for the PK/PD knowledge creation process.
Data supplementation, on the other hand, requires model
assumptions that are not as stringent as the assumptions made
when analyzing the data created by a data supplementation
methodology.

Once data synthesis or supplementation is performed,
the data must be analyzed for the created knowledge to be
extracted. This can be performed using statistical or popula-
tion PK/PD modeling approaches chosen by the pharmaco-
metrician/pharmacokineticist. There will be variations in
steps 3 and 4 of the PK/PD knowledge creation process de-
pending on whether data synthesis, estimation of inestimable
uncertainty, or data supplementation will be performed. The
application of the created knowledge occurs when the knowl-
edge gained is fed back into the drug development process to
aid the understanding of the response surface of a drug under
development. Communication is the key to the usage of the
product of the knowledge creation process.

The rest of the paper is focused on the data supplemen-
tation approach for PK/PD knowledge creation.

DATA SUPPLEMENTATION

Data supplementation deals with the supplementation of
data to enable the exploration of an aspect of the response
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surface that may not have been targeted for exploration in a
completed trial. It also deals with the supplementation of data
in preclinical animal studies where the destructive nature of
the sampling design does not permit the construction of indi-
vidual profiles for inaccessible tissues. A motivating example
that deals with a targeted aspect of an unexplored region of
the response surface is discussed below to provide clarity on
the approach. Data supplementation in the preclinical animal
setting is beyond the scope of this paper.

Motivation for Data Supplementation

The motivation for data supplementation comes from the
following:

® After data from a trial has been analyzed, it may be-
come obvious that the dose range explored was lim-
ited, and more information (data) would be needed to
gain an understanding of the effect of a dose or doses
not studied.

® Abrupt cessation of a clinical trial could occur for non-
clinical reasons, such as a nonclinical toxicology study
finding. In such a situation, not all subjects would have
completed the clinical trial—an incompletely observed
study. The question arises as to what the responses of
the subjects who could not complete the study would
have been if the trial was not stopped abruptly. If a
solution was found that provided an insight into what
the study outcome would have been, the need for re-
peating such a study once the nonclinical problems are
resolved could be obviated.

® Sometimes the clinical trial data do not lend them-
selves to the traditional PK/PD analyses. Consider a
situation in which drugs are administered as combina-
tions in a clinical trial due to their anticipated synergy,
but the concentrations of the primary drug driving the
effect is unavailable while that of the synergistic drug
is available. In such a situation, a PK/PD model cannot
be developed to characterize the interaction, but there
is the need to characterize the effect that could be
produced with a different dose of the interactor drug
while the dose of the primary drug remains constant.

® A drug may be found, after a clinical trial, to appear to
exhibit an inverted U-shaped response, and it is not
clear whether a dose not studied in the trial could have
produced an effect on the upswing of the dose-
response curve that is more effective than a dose in the
downswing of the dose-response curve.

Methodology for Data Supplementation

Multiple supplementation (MS) and its modification
thereof—structure-based multiple supplementation (SBMS)
approach—is proposed as a method for addressing the issue
of data supplementation for the characterization of a targeted
region (e.g., effect of a dose or dose range) of an unexplored
response surface. The MS approach is an adaptation of the
multiple imputation methodology used for augmenting data
in missing data situations to enable data analysis on a com-
plete data set. First the procedure for performing data supple-
mentation is described, followed by a review of the multiple
imputation (MI) methodology, and a description of the MS
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approach, and a discussion of SBMS in the context of a mo-
tivating example.

Data Supplementation Procedure

The procedure for data supplementation is as follows:

1. Statement of the objective of data supplementation
for PK/PD knowledge creation;

2. Performance of PK knowledge discovery;

3. PK data synthesis for target dose groups;

4. Covariate data synthesis for virtual subjects in the tar-
get dose group(s);

5. Discovery of hidden knowledge from real data set to
which supplemental data will be added;

6. Implementation of a data supplementation methodol-
ogy (i.e., MS and its modification, SBMS); and

7. Discovery and communication of the created knowl-
edge.

The MI methodology is first described to provide the
framework for understanding the basis of it being adapted to
create the MS methodology.

Multiple Imputation

Multiple imputation (MI), developed by Rubin (7,8), is a
predictive approach to handling missing data in multivariate
analysis. It blends both classic and Bayesian statistical tech-
niques and relies on specific iterative algorithms to create
several imputations. MI rectifies the major disadvantages
(i.e., bias and lack of a measure of parameter estimation un-
certainty) of single imputation methods (e.g., the use of a
mean or median value or the last observation carried forward
to fill in missing values) by replacing each missing value with
a vector composed of M = 2 possible values (usually between
2 to 10, but commonly 5), to accurately reflect uncertainty and
to preserve important data relationships and aspects of the
data distribution. It requires that the analyst specifies an im-
putation model, imputes several data sets, analyzes them
separately, and then combines the results. MI yields a single
set of test statistics, parameter estimates, and standard errors.

The validity of the method hinges on how the imputa-
tions are generated. It is not possible to obtain valid infer-
ences if imputations are created arbitrarily. On average, the
imputation should give reasonable predictions for the missing
data, and variability among them should reflect an appropri-
ate degree of uncertainty. Rubin (9) provides technical con-
ditions under which repeated-imputation method leads to fre-
quency-valid answers. An imputation method that satisfies
these conditions is said to be “proper” (9). Stated simply,
procedures for imputation, whether based on explicit (para-
metric) or implicit (nonparametric) models, ignorable or no-
nignorable models, that incorporate appropriate variability
among repetitions within a model are called “proper.” “Ig-
norable missingness” occurs when the probability of a missing
value is not dependent on the value itself, but may depend on
the values of other variables in the data set (7). A variety of
proper imputation methods based on both explicit and im-
plicit models, including a fully normal model, the Bayesian
bootstrap, and the approximate Bayesian bootstrap (ABB),
have been studied by Rubin (10). An imputation model must
preserve all important associations among variables in the
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data set, including interactions if they will be part of the final
analysis. Also, the dependent variable must be included in the
model (11).

The MI Paradigm: Parametric Bayesian Models

Rubin’s suggested Bayesian approach to MI was pop-
ularized by Schafer (11), who provided detailed algorithms
for creating Mls in different situations. Suppose, in general,
that Y = (y.,V2,...,Y,), where the first a values [Y,,, =
(¥1Y2,---Y.)] are actual observed values and the remaining
values [Y,,;c = (Vas1:Vasose--»Y,) are missing at random. Y =
(Y, ps»Y,is) follows a parametric model Y ~ P(Y'16), where 6
is the unknown parameter, or a vector of parameters in the
multivariate case, that we are ultimately interested in (e.g.,
mean, variance, or shape that describes the response surface).
0 is assumed to have a prior distribution and Y ,,,,, is ignorably
missing. MIs are Bayesianly proper if they are independent
realizations of P(Y,,; | Y,,,), the posterior predictive distri-
bution of the mrssrng data under some complete data model
and prior. P(Y,,,;, ) may be written as

obs

P( mis | Yobv) fP( mt\' nbsae)P(e | Ynhs)de

the conditional predictive distribution of Y, given 0, aver-
aged over the observed-data posterior of 6. Thus, Bayesianly
proper imputations reflect uncertainty about Y, given the
parameters of the complete-data model, as well as uncertainty
about the unknown model parameters. The resulting MIs
are appropriate under an assumption of ignorability because
P(Y,. | Y, does not rely on the pattern of the observed
response. Thus, an imputation for Y, can be described in
two steps: first by simulating a random draw of the posterior
distribution of the unknown parameter 6* ~ P(6 | Y,,,) and
followed by a random draw of the missing values from their
conditional predictive distribution Y7, ~ P(Y,, ;| Y, ,.0%).

For some cases, the posterior distribution of 6 is not
straightforward, due to nonstandard distribution that can not
be easily simulated. Rubin (9) introduced a few general strat-
egies for approximating draws for the posterior distribution of
0, including large-sample normal approximations and impor-
tance resampling.

The parametric Bayesian approach could be adopted for
data supplementation. However, we choose to adapt the non-
parametric approximate Bayesian bootstrap approach, which
makes minimal distributional assumptions for data supple-
mentation, and this is discussed next.

Nonparametric Approximate Bayesian Data
Supplementation Method

Rubin (9) described a simple method for MI called the
approximate Bayesian bootstrap (ABB). This approach
makes it possible to generate proper imputation for Y, with
minimal distributional assumptions. We have adapted this ap-
proach for MS, making it possible to generate “proper”
supplementation for Yj,,, with minimal distributional as-
sumptions. To illustrate the ABB approach for MS, consider
a collection of n units with the same value of covariates X,
where a subjects were observed and n,,,, = n — a subjects
(virtual) with values to be supplemented. The ABB creates M
ignorable repeated supplementations fromm = 1, ... M as

follows: a) create a new pool of Y#, by sampling a values

oln
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..y.) with replacement, and b) select a
again with replacement.

frOm Yobs (y17 y27"
set of n,,,,,, possible values from Y#*

supp obs>
By drawing n,,,,,, supplemented values from a possible sample
of Y* _ values rather than from the Y _, values, the ABB

obs obs

approach generates appropriate between-supplementation
variability, at least assuming large sample random samples
given covariates X. This is akin to the generation of imputa-
tion variability, assuming large sample random samples as
demonstrated by Rubin and Schenker (12).

Combining Estimates

Following the approach used in the MI paradigm, after
M supplementations have been created for a data set, they are
then analyzed using standard PK/PD or statistical package.
There are now M completed data sets containing the ob-
served values and the supplemented values instead of one.
The PK/PD or statistical analysis must be done M times, once
on each complete data set. Across M data sets the results will
vary, reflecting the uncertainty due to supplemental observa-
tions. The M complete data analyses are combined to create
one repeated- supplementation inference.

Let @ and U,,, m = 1, ... M, be M complete supple-
mented data estimates and the1r associated variances for a
parameter O, calculated from the M data sets completed by
repeated supplementations under one model. For instance,
0 =3, (:)m is the least squares estimate of B, and U, is the
weighted residual mean square error. The repeated supple-
mentation estimate of © is the mean of the complete data
estimates:

||b”4§

There are two components of the variability associated
with this estimate:
The average within-supplementation variance,

M
U=> U,

m=1

and between-supplementation component,

- @, -07
mEﬂu >/(M_1)

The total variability associated with 0 is given by
T=U+(1+M")B

Inference can be made using O, T, and a distributional
assumption. For example, if O is a scalar quantity, the ap-
proximate reference distribution for interval estimates and
significance tests is a ¢ distribution:

(O-0)T*~¢
where the degrees of freedom, v, are given by
v=(M-1)1+r)7

with r = (1 + M~HB/U (12). B
Thus, a 100(1 — a)% interval estimate for O is
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0+ Lyi—ar2 \/T

The between and within subject ratio, r, estimates the
population quantity y/(1 — +y), where vy is the fraction of in-
formation about O supplemented.

STRUCTURE-BASED MULTIPLE
SUPPLEMENTATION: A MOTIVATING EXAMPLE

This example illustrates how knowledge can be created
using a combination of data synthesis, structure revelation,
and multiple supplementation (MS) techniques. Because data
supplementation was performed based on the structure re-
vealed from the data, as discussed later, this modification of
the MS approach is termed structure-based multiple supple-
mentation (SBMS) approach. A parallel dose efficacy study of
a drug in development was performed with three dose levels:
placebo, 200 mg, and 600 mg. Subjects were sampled for
population pharmacokinetic and efficacy analysis. The objec-
tive of this PK/PD knowledge creation investigation was to
determine a likely treatment outcome if subjects were ran-
domized to a 100-mg dose group that was not studied in an
already completed trial. The 100-mg dose group is hereafter
referred to as the target dose group.

Prior to performing PK/PD knowledge creation, PK
knowledge discovery (6) was performed. Thirty-five subjects
were administered the test drug on a three times daily basis
for 28 days. Eighteen and seventeen subjects were random-
ized to receive 200 and 600 mg of test drug orally. These
subjects provided 974 concentrations, yielding an average of
27.8 concentrations/subject over a 28-day period. The mean
(SD) age, weight, and height of subjects were 45 (6.3) years,
85 (31.3) kg, and 171.6 (12.3) cm, respectively. There were 21
male and 13 female subjects, 25 whites, 5 blacks, and 4 His-
panics.

The population PK model was developed as a conse-
quence of PK knowledge discovery performed on the data
described above. Briefly, graphical displays were used for
structure revelation and hidden patterns in the data. There-
after, one- and two-compartment pharmacokinetic models
with first-order input were tested for their ability to appro-
priately characterize the PK of the drug using the NONMEM
software. The PK data were best described with the two-
compartment model incorporating a first-order input. The pa-
rameters of the model were absorption rate constant, appar-
ent volume of the central compartment, apparent volume of
the peripheral compartment, intercompartmental clearance,
and apparent clearance. Empirical individual Bayesian post
hoc parameter estimates were obtained and subjected to
more exploratory data analysis [i.e., graphical analysis and
generalized additive modeling (GAM)] for initial covariate
selection. The GAM analysis was coupled with bootstrap rep-
lication stability (13) to select covariates with inclusion fre-
quency of =50% from 100 nonparametric bootstrap repli-
cates. The covariates—age, and dose level—selected by GAM
were used to create a full model in NONMEM from which an
irreducible final model was obtained by backward elimina-
tion. The irreducible model for the key parameter of interest,
apparent clearance, included age and dose level as significant
predictors. Thus,

CL/F =30.2 - 3.22 x (Age-Median) x IND + 0.14 x DL
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where IND takes on the value of 0 if Age is greater than the
median age and 1 otherwise, and DL is dose level.

The model was used to simulate concentrations from
which area under the plasma concentration-time curve
(AUC) was computed and compared with AUC calculated
from model-based parameters as a means of checking the
posterior predictive performance of the model. Figure 1
shows the distribution of AUC values for observed (model-
based) and simulated data for the two studied doses and the
100-mg target dose. The results of 10 replications out of 100
are shown in the figure for illustrative purposes. The median
simulated AUC for the 600-mg dose was similar to the model
calculated AUC, and more than 88% of the AUC values from
the simulated data overlap the model-calculated AUC. The
median AUC values obtained from the simulated data for the
200-mg dose were slightly biased (18%) with 68% of the val-
ues overlapping the model-calculated AUC values. The Kol-
mogorov-Smirnov goodness-of-fit test, a two-sample com-
parison test, was used to perform the posterior predictive
check for each replicate. The null hypothesis was that the
observed (model-based) AUC distribution and the simulated
ones were equal, with the alternative that they were not. The
ranges of p value obtained across replicates for the 200- and
600-mg doses were 0.11 to 0.75 and 0.24 to 1, respectively,
indicating similarity in the distributions. Although the model
performed better in predicting AUC with the 600-mg dose
than with the 200-mg dose, the population PK model devel-
oped did provide a reasonably adequate description of the
data and was later used to simulate PK profiles for virtual
subjects used in data supplementation described below.

With PK knowledge discovery performed, the PK/PD
knowledge creation was then performed in two phases as fol-
lows:

Phase I consisted of 3 steps:

1. Simulation of subjects with demographics similar to
those in real study data set. Briefly, data synthesis of covari-
ates for the virtual study was done through a resampling with
replacement approach to ensure that the covariate distribu-
tions in each virtual study were similar to the real study. The

AUC (ug*hr/mL)
10
1
1
|
||:|:r

.

i)

200 mg observed

200 mg
simulated

600 mg observed

600 mg
simulated

100 mg
simulated

Fig. 1. Distributions of AUC values for 200- and 600-mg dose groups
studied with parallel comparisons of those obtained via posterior
predictive performance check. AUC values from PK data simulated
for the target dose of 100 mg are also included for comparison. “Ob-
served” in the figure refers to population PK model-based AUC.
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Fig. 2. Comparison of distributions of demographic variables be-
tween the real and simulated data sets. M1 to M10 represent the
number of replications used for data supplementation.

demographic data from the real study was examined for cor-
relation between covariates. There were no significant corre-
lations between age and gender, and age and race. Also, gen-
der and race were not correlated. However, age and weight
were correlated. Given the total number of subjects, n, in the
data set, a covariate vector such as gender was resampled with
replacement from the observed data so that the proportion of
males and females in the simulated data set was similar to that
in the real data. This procedure was repeated for the other
uncorrelated covariates. Where the covariates were corre-
lated, the resampling was done at the subject level to maintain
the correlation structure. This resampling with replacement
approach ensures equal probabilities for each element (co-
variate) of the population. The above algorithm was repli-
cated for each virtual study used in the multiple data supple-
mentation step discussed latter. Figure 2 illustrates the distri-
butions of some of the covariates. It is worth noting the
similarity between the distributions of the resampled covari-
ates and those from the real study.

Target Dose Group

Generate covariates and PK data based on the
available data and the post-hoc PK parameters

v

| Generate baseline PD values by MS algorithm
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2. Simulation of pharmacokinetic profiles for subjects
from step 1 using a population pharmacokinetic model devel-
oped from data obtained from previously completed trial and
computation of exposure metrics and PK parameters for the
simulated subjects. The distribution of AUC values, for in-
stance, the target dose of 100 mg, is shown in Fig. 1. These
AUC values obtained from the first 10 replications were used
for data supplementation.

3. Combination of individual PK (exposure) variables
from virtual subjects with subject specific covariate data to-
gether with the real data set (including the PD-biomarker
response data) to create a PK/PD knowledge creation data
set.

Phase II was performed in 2 major steps:

1. Performance of data structure analysis on real study
data (untransformed and transformed) to reveal hidden struc-
ture, patterns, and relationships in the data set. This involves
data visualization (graphing and fitting) and exploratory mod-
eling (e.g., tree-based modeling).

2. MS is used to generate (M = 10) baseline biomarker
values for simulated subjects in the target dose group in which
knowledge is to be created. MS is performed based on the
revealed data structure. Figure 3 provides the schema of an
example of the SBMS approach. In the example under con-
sideration, the target dose group was partitioned into two
groups: group A: subjects with higher biomarker baseline val-
ues and younger age (likely responder group); and group B:
the remainder of the subjects (the likely nonrespond-
er group). Reduction of biomarker levels from baseline value
was an indication of subject response to therapy. Basically,
the data supplementation for group A proceeded as follows:
a) the slope from day O to day 8 was supplemented from
the real data that contained subjects matching the subpop-
ulation criteria from day 0 to day 8; and b) slopes
for other time periods (i.e., day 8 to 15 and day 15 to day 28)
were supplemented from all available data at the same time
periods.

Existing Data

New Metric: Percentage
change (PC) of PD values from
the previous time point

]

Day 0 Data Structure Analysis:
l TBM and trim analysis
N9 | Day 8 PD value equals l
Match subpop. -~ | baseline value multiplied
Characteristics? by the imputed Day 8 PC - no | Subjects
value from Groups A+B distinct dose Group B
response pattern2~~ > oup
L yes
Day 8 Day 8 PD value equals baseline value
multiplied by the imputed Day 8 PC value
from Group A only
| Subjects €
» Group A
v
Day 15 | Day 15 PD value equals Day 8 value multiplied by the l
supplemented Day 15 PC value based on all groups (A+B)
¢ Subpopulation characteristics (e.g.
Day 28 Day 28 PD value equals Day 15 value multiplied by the high PD baseline value and younger)

supplemented Day 28 PC value based on groups (A+B)

Fig. 3. A schematic of the structure-based multiple supplementation (SBMS) approach.
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For group B subjects, biomarker responses were supple-
mented from all available PD data to reflect the overall un-
certainty. Altogether, 10 replicates of target group data sets
were created for the target dose group.

Figure 4 shows the transformed data distributions of per-
centage changes from baseline values (i.e., slope) across rep-
licates for the 100-mg target dose group from day 0 to day 8.
In Fig. 4a, all subjects are included, but Fig. 4b contains the
responder subpopulation only. It can be observed that sub-
jects who met the responder criteria (Fig. 4b) had steeper
slope values; the majority were in the —0.5 to —1 range.

After the creation of the biomarker data, each of 10
replicate data sets for the target 100-mg dose group was sub-
jected to modeling and the results combined for PK/PD
knowledge creation on the performance of the 100-mg dose
level. The details of the modeling and results thereof are
beyond the scope of this chapter. However, Fig. 5 presents the
data created for the target dose group in addition to the real
data that were collected for the other those groups that were
studied. The results were consistent with the pharmacology of
the drug. The supplemented biomarker response for the 100-
mg target dose group appeared better than that observed for
the 600-mg dose in the responder population as revealed by
the slope, but comparable with the 200-mg dose (Fig. 5). The
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knowledge created about the performance of the target 100-
mg dose was communicated to the development team for the
design of a future trial.

DISCUSSION

The success rate of new chemical entities (NCEs) is any-
thing but stellar (14). In 1987, the cost of bringing a new drug
into the market was $237 million as opposed to $802 million
in 2000 (15). By the end of 1999, 21% of the NCEs with
investigational new drug applications (INDs) filed from 1981
to 1992 had been approved for marketing in the United States
(16). Of those that failed in the period from 1987 to 1992, 38%
of the NCE:s failed because of efficacy (activity too weak or
lack of efficacy), 34% on economics (commercial market too
limited or insufficient return on investment), 20% because of
safety (human or animal toxicity), and the rest for nonspecific
reasons (16). What is becoming increasingly clear is that tra-
ditional drug development approaches are unlikely to succeed
in the future given the economics of drug development—a
low probability of success coupled with increasing product
development times means decreased sales time after market
launch and lower return on investment for pharmaceutical
companies.

To speed drug development, sophisticated new technolo-

@ £ 7 I R |
w
o
1 2 3 4 5 6 7 8 9 10
replicate
o~
® & -4 - - - - - N
®
1 2 3 4 5 6 7 8 9 10
replicate

Fig. 4. Day 0 to 8 slope distributions across multiple supplementation replicates for the
target dose level: (a) all subjects, and (b) subjects in the responder subgroup.
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Fig. 5. Slope distributions across days among different dose groups
for subjects in the responder subgroup. Note that 100 mg is the tar-
geted dose group.

gies and approaches in the discovery and design of new drugs
are replacing the traditional methods of discovery. Increas-
ingly, however, a pharmacometrically guided approach is be-
ing applied to drug development. The need to get the most
knowledge from every drug development study that is per-
formed cannot be overemphasized in this day and age of spi-
raling drug development cost. This need has lead to the de-
velopment of PK/PD knowledge creation in general, and data
supplementation in particular. In the application example, the
nature of the response to a targeted dose was obtained. The
drug effect that would have been produced if the target dose
of 100 mg was studied would have been better than that pro-
duced by the 600-mg dose but comparable with that produced
by the 200 mg in the responder group. Thus, the drug was
postulated to have an inverted U-shaped dose-response curve
with doses above 200 mg producing lesser effect than the
200-mg dose.

The application of PK/PD knowledge creation and im-
plicitly knowledge discovery during drug development will
optimize the drug development process and promote rational
pharmacotherapy. Concerning drug development, Minto and
Schnider (17) have stated, “Rapidly evolving changes in
health care economics and consumer expectation make it un-
likely that traditional drug development approaches will suc-
ceed in the future. A shift away from the narrow focus of
rejecting the null hypothesis toward a broader focus of seek-
ing to understand the factors that influence the dose-response
relationship together with the development of the next gen-
eration of software based on population models should per-
mit a more efficient and rational drug development pro-
gramme.” The drug development process can be improved by
implementing knowledge-driven development strategies
founded on powerful, informative, and robust clinical trials.
PK/PD knowledge creation and its companion knowledge dis-
covery processes play pivotal roles in the generation and ex-
tension of knowledge and therefore can be influential in
bringing efficiencies to the drug development process.

PK/PD knowledge creation via data supplementation re-
sults in the further acquisition of knowledge beyond that em-
bedded in one’s data. When data supplementation for PK/PD
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knowledge creation is implemented, the result is a greatly
improved understanding of the response surface because of
the knowledge created. This in turn leads to the efficient
design studies.

The approach to data supplementation described in this
paper can only be implemented if the conditions stipulated
under the section “Motivation for Data Supplementation” are
met. The MS approach and its modification, SBMS, are an
adaptation of the MI paradigm with the focus being data
supplementation and not “missingness.” From Figs. 4a and
4b, it is obvious that at least five replications are sufficient for
obtaining robust data from the data supplementation process.
MS should not be confused with missingness and the condi-
tions that must be satisfied for before performing MS. With
MS, the focus is on characterizing an unexplored region of the
response surface that was not the subject of focus in an al-
ready completed study. With the MS approach, data are gen-
erated for knowledge creation or acquisition, whereas MI
deals with filling in missing data to create a complete data set
for analysis.

It must be stated that in the current climate, insufficient
attention is given to knowledge-based drug development. The
process of drug development can be no better than the knowl-
edge on which it is based. Without adequate knowledge, it is
impossible to have a thorough understanding of one’s drug
with the consequent compromising of the optimal develop-
ment strategy. PK/PD knowledge creation through data
supplementation, with knowledge discovery being an implicit
component of it, results in gaining knowledge about a tar-
geted region of a response surface that was not previously
studied in a completed study—this gain without expending
resources in conducting a new study. This provides the drug
developer with the wisdom to make the right decisions about
future trials and the strategic path for the development of a
drug.
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